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Abstract. In this paper we present a new scheme for obtaining the electronic contribution to 
the electric field gradient at the nucleus in systems which are well represented by a tight- 
binding Hamiltonian. We show that for close-packed metallic systems the linear muffin-tin 
orbital method in the recently developed tight-binding representation provides a realistic 
tight-binding Hamiltonian which can be used in this context. 

The scheme is based on the recursion method and can be applied to systems without 
symmetry such as amorphous metals, where k-space methods cannot be used. 

Test calculations were done for HCP Z r  with the z axis of the coordinate system taken 
along thecaxisofthecrystalandalsoalonganarbitrarydirection. Theresultsareindependent 
of the choice of the system, showing that the procedure works in absence of symmetry. When 
compared with the experimental results for HcPZr, our calculations give the correct sign and 
a reasonable value for the magnitude. Considering the approximations made when obtaining 
the Hamiltonian and the subtlety of the effect, the results are very encouraging. 

In the following paper, other HCP metals are studied. A comparison between real-space 
and k-space calculations in these metals gives a good idea of the advantages and limitations 
of the proposed real-space scheme. 

1. Introduction 

Lately there has been great interest in the behaviour of the electric field gradient (EFG) 
at the nucleus in non-periodic systems due to the local character of this information. A 
large number of experiments have been performed to study the EFG in transition-metal 
alloys including amorphous systems in order to obtain clues about the local environment 
and chemical ordering. 

On the other hand, theoretical understanding of the EFG in transition metals has 
been slow and onlyrecently have reliable calculations of these quantities, even for simple 
periodic systems, become available (Blaha et a1 1988). For non-periodic systems, the 
situation is much worse. There is a good description of the so-called lattice contribution 
to the EFG based on a point-charge model (Cjzek et a1 1981), which is often used to 
interpret the experiments (Michaelsen et a1 1986, Aubertin et a1 1985). However, in 
transition-metal alloys the lattice contribution is small and the EFG is dominated by the 
contribution of the valence electrons close to the nucleus, which is totally ignored in the 
point-charge model (Das and Schmidt 1986). To understand the behaviour of the EFG. 
we need a good description of the electronic structure and, even though progress has 
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been made (Guenzburger and Ellis 1987), for non-periodic systems this is no simple 
task. Only recently, within a very simple model and with the help of supercells, have 
such calculations been attempted in amorphous metals (Levy Yeyati et a1 1988). 

In this paper we develop a scheme which allows us to obtain the EFG by means of a 
real-space procedure which requires no translational symmetry. A similar real-space 
calculation, with a much simpler Hamiltonian which included only the non-dominant d 
contributions, was used before to estimate the EFG of an Fe impurity in HCP Zr (Petrilli 
and Frota-Pess6a 1985). In this previous calculation, we used symmetry to guarantee 
that the EFG was given by a diagonal matrix and to avoid the calculation of the more 
difficult off-diagonal terms. Here, in § 2, we generalise the real-space recursion scheme 
to include s andp orbitals and to calculate the full EFG tensor. This scheme, implemented 
in real space, can be used in the absence of symmetry to obtain the EFG for any system 
which is well described by a tight-binding Hamiltonian. In addition, we show in § 3 how 
the procedure can be used in connection with the linear muffin-tin orbital (LMTO) method 
in the tight-binding representation (Andersen and Jepsen 1984, Andersen et a1 1985). 
This representation provides the framework for calculations of the electronic structure 
of non-periodic systems, based on a realistic tight-binding Hamiltonian. We also discuss 
the approximations that were made when obtaining the Hamiltonian used in the present 
calculations. Finally in § 4 we present our conclusions. 

2. The electric field gradient tensor 

The EFG at the nuclei is given in terms of the electronic wavefunctions VjlE and the 
electrostatic potential V(r )  as a tensor V ,  given by (Amaral et a1 1984): 

where x ,  = x ,  y ,  z and EF is the Fermi energy. 
The tensor V,, is traceless and symmetric and has in general only five independent 

components. We can always reduce the tensor to a diagonal form by chosing coordinate 
axes along the principal axes. In that case we have three non-zero components V,,, V,, 
and V but, since the tensor is traceless, only two of them are independent. It is standard 
in the literature to define the z axis along the direction of maximum EFG so that, when 
the tensor is written in terms of the principal axes, V,, is chosen as the component with 
the largest absolute value. 

In a system with axial symmetry the direction of maximum EFG coincides with the 
symmetry axis. If we choose the z axis along this direction, the VI, tensor is diagonal. In 
amorphous metals and other non-symmetric systems the direction of maximum EFG 
varies from site to site. The V,, tensor for each site is in general non-diagonal and the 
choice of the local principal axes is done through tensor diagonalisation. Therefore, if 
we define V,, by chosing the z axis along the direction of maximum EFG, this choice will 
be local and the direction of z will vary from one nucleus to the other. 

In a previous paper (Petrilli and Frota-PessBa 1985) we have developed a scheme 
based on the recursion method (Haydock 1980) which allows us to obtain the EFG in 
systems with axial symmetry for which the VI, tensor is diagonal for the natural choice 
of coordinates. 

In this section we generalise the procedure to obtain the EFG to the case where the 
V ,  tensor may be non-diagonal for the given coordinate system. 

”. 
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As before (Petrilli and Frota-Pessda 1985), we use the tight-binding approach and 
expand the wavefunction lqE) in terms of a set of local energy-independent basis 
functions 1 Q ) ~ , ~ ) ,  where R is a vector indicating the position of the site and m indicates 
the orbital. Then we have 

9 

Here we take nine (s, p and d) orbitals for each site, the functions / Q ) ~ , ~ )  are chosen 
to berealandthenineorbitalsaredesignatedbys,x,y,z,xy,xz,yz,x2 - y2and3z2 - r2 .  
When this set of basis functions is used, the Hamiltonian matrix in real space is symmetric 
because its matrix elements are real. Therefore the coefficients amsR(E) are eigenvectors 
of a symmetric matrix and can be taken to be real. 

To obtain the tensor VLj at a given site R ,  we neglect, as we have done previously 
(Petrilli and Frota-Pessda 1985), the contributions from local orbitals with index R '  # 
R ,  which should be small. This assumption was confirmed by recent linear augmented 
plane-wave (LAPW) calculations (Blaha et a1 1988). Neglecting these terms, we write 

where 
EF 

nm,m' = 1 a ; , R ( E ) a m ' , R ( E )  dE+ (4) 

From here on we drop the index R indicating the site, which is always the one being 
considered and use only one index in nm,mz whenever the two orbital indices happen to 
be equal. In the Appendix we show the expressions obtained for the six components of 
Vi/ using the above notation. The integrals I,, and I d d  associated with the p and d 
contributions to the EFG are given by the averaged value of r -3  with respect to the 
normalised radial part of the p and d basis functions respectively. The integral I s d  is 
similar but involves the integral over all space of Y - ~  multiplied by the product of the 
radial parts of s and d basis functions. As we shall see, the p contribution is dominant 
and depends on the value of Ipp given explicitly by 

As I,,, I d d  and I s d  are related to the average value of the radial part of the tensor VL,, the 
fractions multiplying the several nm,m, in the expressions of Vl, are results of the average 
over the respective angular parts. 

The integrals for the radial parts are not difficult to evaluate. Therefore the values 
of Vl, depend essentially on nm,m, which are related to the coefficients am(E). To obtain 
these values, we have to know the electronic structure for the system in question, and 
depending on the object of study this may not be an easy task. 

To obtain n,,", we may use the recursion method (Haydock 1980). As we have 
shown before (Petrilli and Frota-Pessda 1985), when m = m' ,  n, is given directly by the 
occupation number per spin associated with the local orbital m: 

Here pm(E)  is the local density of states per spin, projected on the orbital m, which 
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Table 1. Values of the elements of the EFG tensor for the p, d and s-d contributions in the 
rotated case, before diagonalisation. 

p -7.22 -27.07 34.29 0.0 36.01 0.0 
d -1.90 -7.87 9.77 0.0 9.62 0.0 
s-d 0.0224 0.0857 -0.1081 0.0 -0.1113 0.0 

can be obtained from the diagonal element of the Green function using the standard 
recursion procedure. 

To obtain nm,mt, we need the off-diagonal terms of the Green function, which can be 
calculated using the slightly more complicated procedure (Haydock 1980), described 
below. We perform two different recursion calculations, one taking as the starting orbital 
1 um+m,) and the other 1 These initial orbitals are defined in terms of the original 
local basis as 

These calculations give P ~ + ~ , ( E )  and p m  -m8(E) ,  the local densities of states associ- 
atedwith theorbitals lumkm8).  Ifwecompare theexpansionsof lumim,)as basisfunctions, 
we obtain a relation between the expansion coefficients which gives us as 

As we have values for the expressions in the Appendix can be used to obtain the 
EFG tensor in the general case of systems which lack symmetry. 

We have used the procedure described above to evaluate the EFG of Zr.  To perform 
the calculations, we have chosen an atom at the centre of a cylindrical cluster of radius 
R and height h ,  containing 1249 atoms distributed on a HCP array with the experimental 
lattice parameters a = 3.23 A and c/a = 1.59. To maximise the distance from the central 
atom to the surface for a given number of atoms, we have used h = 2R. If we chose the 
z axis along the c axis of the HCP lattice, VL, will be a diagonal tensor and the EFG can be 
easily obtained (Petrilli and Frota-Pessda 1985). However, here we wish to illustrate a 
more general procedure, which can be applied in absence of symmetry to calculate a 
general non-diagonal Vi,. So we have chosen a second coordinate system for which the 
z axis makes an angle of 30" with the c axis. In this coordinate system the axial symmetry 
is broken and the tensor is non-diagonal. Of course the direction of maximum EFG should 
still be along the c axis, and this will be a further test for our results. 

To parametrise our real-space Hamiltonian, we have used the LMTO atomic sphere 
approximation (ASA) tight-binding formalism (Andersen and Jepsen 1984, Andersen et 
a1 1985) to first order as described in the next section. We note that this formalism can 
also be applied to treat non-periodic binary alloys ( Frota-PessBa 1987, Fujiwara 1984). 

We obtain the tensor VL, at the site of the central Zr atom by using the recursion 
method and the procedure described before, which allows us to obtain nm," for every 
pair of orbitals at the site. Because the tensor is symmetric, it is completely characterised 
by six components. In table 1 we show these components for the p, d and s-d contri- 
butions, before diagonalisation. We then diagonalise the tensor and identify the largest 
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Table 2. Values of the d ,  p and s-d contributions and of the total electronic contribution to 
the EFG for a HCP Z r  lattice for a coordinate system whose z axis is parallel to the c axis and 
for another system where the z axis is rotated by30". The full-potential LAPW results of Blaha 
et a1 are also shown for comparison. 

d-d contribution p-p contribution 
(ioi3 esu ~ m - ~ )  (10'' esu cm-') (ioi3 esu ~ m - ~ )  (ioi3 esu c m 3 )  

s-d contribution Total EFG 

z parallel to c axis 14.09 55.12 -0.175 69.0 
z rotated 30" 15.19 55.09 -0.173 70.1 
LAPW 32 123 - 143 

component in magnitude with VZz. From the eigenvectors we can also identify the 
direction of the principal axes associated with Vzz.  In our calculation this direction for 
every contribution (p,  d and total) to the EFG agrees to within a degree with the direction 
of the c axis, as was to be expected. 

We have also calculated the EFG at the central site using a coordinate system for 
which the z axis coincides with the c axis and for which V ,  is diagonal automatically. In 
this case, V,, = V,, by symmetry and, because the EFG tensor is traceless, the value of 
V,, (table2) determines all the elements. The idea is to determine the order of magnitude 
of the errors which are inherent in the recursion method, such as the use of terminators. 
If the results for V,, in the two coordinate systems are consistent, the recursion procedure 
is giving a meaningful result. In table 2 we show the results of the procedures starting 
with firstly z parallel to the c axis and secondly with z rotated by 30". In all cases, the 
recursion chain was terminated at LL = 20 and the terminator used by Beer and Pettifor 
(1984) was used to obtain the density of states. The partial densities of states were then 
integrated to obtain the occupation numbers. We note that the terminator can introduce 
sharp peaks into the density of states at the band edges. We have to be aware of that fact 
when performing the integrations. This problem may be avoided in the future if one uses 
the Gaussian quadrature method (Nex 1978) to obtain the integrated quantities. 

The agreement between the results obtained using the two different coordinate 
systems is quite good in value and direction, showing that the procedure can be used to 
find V,, when the direction of maximum EFG is not known a priori. We have noted that 
the d contribution is more sensitive to the terminator (figure l), probably because of the 
larger value of the d density of states near the Fermi level. This may be the cause of the 
slightly larger discrepancy observed between the values of the d contribution in table 2. 
Our results show that, in agreement with the results of Blaha etal,  also shown in table 2 
for comparison, the p contribution dominates the EFG, but we note that our results for 
the EFG of HCP Zr are roughly a factor of 2 smaller than those obtained using the more 
exact full potential LAPW formalism. In the companion paper (Methfessel and Frota- 
PessBa 1990), we trace this difference to the use of the ASA approximation. 

If we use the real-space formalism, the p, d and s-d contributions can each be 
expressed as a product of two terms: the radial integral I,,, and the rest which includes 
the angular contribution. Here, as explained in the next section, for the radial part cpl(r) 
we have used values obtained from LMTOASA calculations for Zr. Using these functions 
we obtained = 95.6 k3, I d d  = 12.2 A-3 and Isd = 0.085 k3. Localised d atomic 
wavefunctions are often used to evaluate &d (Levy Yeati et a1 1988, Petrilli and Frota- 
PessBa 1985). We verified that these results for Id ,  are in reasonable agreement with 
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Figure 1. Variation in the angular 
asymmetries AN,  (0) and ANd (a) 
as functionsof the recursion’s chain 
cut-off parameter LL. 

L L  

those obtained by LMTO ASA calculations. We note that this is not the case if the more 
delocalised p atomic wavefunctions are used. For I,, they give values which are much 
smaller than the correct ones. If we divide the values of the d,  p and s-d contributions 
given in the Appendix by the radial part, we obtain 1.15, 0.58 and 2.06, respectively. 
Therefore the part that comes from angular deviations and which is calculated by the 
recursion procedure is smaller for the p bands. That and the fact that a simple evaluation 
of Ipp using atomic wavefunctions gives a much smaller value for this quantity explain 
why for a long time it was thought that the d contributions were dominant in transition 
metal where the d shell is not filled. 

The magnitude of the EFG is strongly dependent on the radial integrals I,, and Idd but 
the sign of the EFG is completely determined by the angular asymmetry. For example, if 
the system has cubic symmetry, the occupancy of all orbitals would be degenerate and 
the EFG would be zero. We follow Blaha et a1 (1988) and define the angular asymmetry 
for p and d electrons by 

ANp = &(Nx + Ny) - N, 
(9) 

ANd = (Nd,, f NdJ - i(Nd,, + Ndyz) - Hd3r2-,2.  

Here we use the capital Ni to denote twice the occupation number per spin ni. 
If we choose our coordinate systems to coincide with the principal axis, we get, for 

Zr (taking LL = 20), AN, = 0.015 and ANd = 0.042. (We note that our values for AN, 
and ANd cannot be directly compared with those of Blaha et a1 because the sizes of their 
muffin-tin sphere and our ASA sphere are different.) These values are extremely small 
and could depend on the energy resolution of the density of states. Therefore it is 
important to verify the dependence of the results on the value of L L ,  the number of 
terms that we keep in the recursion chain. This dependence is shown in figure 1. We see 
that the values of AN vary strongly for small values of LL.  Both contributions change 
sign, ANd at LL -- 8 and AN, at LL = 5 ,  but in both cases AN tends to stabilise around 
a final value, at LL greater than 11. Cutting the recursion chain at LL = 20 seems to 
give satisfactory results. 

3. The LMTO ASA tight-binding approach 

In the last section we have described a real-space scheme to obtain the EFG for a system 
specified by a tight-binding Hamiltonian and corresponding wavefunctions in real space. 
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It is well known that the regular tight-binding formalism is not suitable for calculating 
the electronic structure of delocalised s-p bands in metals, which are essential to obtain 
a good description of the EFG in metals. In this section we show how the LMTO tight- 
binding formalism in the ASA can be used to obtain a more suitable Hamiltonian and we 
discuss the form of the corresponding wavefunctions. The main advantage of having a 
formalism to guide us is that we know exactly which are the approximations involved. 
Therefore it is always possible to improve on the Hamiltonan and wavefunctions if it is 
needed. It would be very hard to improve on the understanding of the problem if, for 
example, the tight-binding Hamiltonian had been derived from numerical fits to more 
exact bands. 

We also note that it is straightforward to apply the procedure described here to close- 
packed non-periodic systems, including amorphous transition-metal alloys. 

The LMTO ASA tight-binding formalism is well known and has been described in 
several papers (Andersen and Jepsen 1984, Andersen eta1 1985). Therefore we shall be 
brief in our discussions, mainly outlining the procedure and stating the approximations 
being used in our present calculations. 

In the LMTO ASA formalism, space is filled with Wigner-Seitz spheres of radius s, 
centred at all atomic sites. The potential is assumed to have spherical symmetry in each 
sphere. The problem of solving for the electronic structure is then divided in two parts. 
The first part involves finding the solution of the radial Schrodinger equation inside the 
sphere of radius s, with given boundary conditions, to obtain the values of the potential 
parameters which are used to construct the Hamiltonian. The second part of the problem 
is to find the structure constant matrix, which depends only on the relative position of 
the atoms. The method is a linear method and the LMTO ASA solutions are valid for 
energies close to a given energy E,. 

One characteristic of the LMTO ASA formalism is that the choice of basis set can be 
done in the most convenient manner. There are three very important basis sets; the 
standard (Andersen 1975, Skriver 1983), the nearly orthogonal (Andersen 1984), and 
the tight-binding (also known as the most-localised) basis set (Andersen and Jepsen 
1984, Andersen et a1 1985). The potential parameters C,, A , ,  Q, and pf/2 for the nearly 
orthogonal basis set vary with the material and type of atom considered, and are 
tabulated for all transition metals (Andersen et a1 1985). (The potential parameters 
C, - E,,, AI,  QIandp;’I2 aredirectlyrelatedto thestandardparameters w(-) ,s@’(- ) ,  
@(-), @(+) and (02)1/2 of Skriver (1983).) 

In real space it is very convenient to work in the tight-binding basis set. Therefore to 
build the Hamiltonian we need the tight-binding potential parameters (for which we 
used barred quantities) and the tight-binding structure constant. The values Q, = 
0.3485, Qp = 0.05303 and Qd = 0.01071, taken to be material independent, can be used 
to define the LMTO ASA tight-binding representation. Given the above values for Ql, the 
potential parameters c, and AI  for energies close to E,, can be obtained using the 
tabulated values C, and A ,  of the nearly orthogonal set and the expressions given below: 

The second part of the problem is to find the structure matrix. In the LMTO ASA tight- 
binding representation the structure matrix S is of the tight-binding form and is non- 
zero only for sites i and j which are close neighbours. The correct way of obtaining 
the tight-binding structure constant matrix S is by direct inversion, starting from the 
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canonical structure constant matrix S (associated with the standard representation) 
which has a known expression (Skriver 1983) and using the definition 

s = S(I - as)-'. (11) 

Here I is the unit matrix and Q is a diagonal matrix with elements Q,. To find S we would, 
in principle, have to invert the large 9N X 9N matrix of equation ( l l ) ,  where N (here 
equal to 1249) is the number of atoms. In practice, to find the 9 X 9 matrices associated 
with Sfor  the on-site term and the hopping to close neighbours at a given site, one can 
apply equation (11) to a small cluster including only first and second neighbours around 
the site. This can be done because, owing to the localised nature of S ,  these 9 x 9 
matrices do not change significantly when a larger cluster around the atom is used in the 
matrix inversion. This surprising fact is well known by users of the inversion programs. 
For example, if we take 50 atoms around the central atom instead of 19, the terms of 
interest differ by less than 0.1%. The same behaviour is observed for these matrix 
elements when amorphous clusters are considered. Of course, if small clusters are used 
to obtain the on-site and hopping terms, the matrix inversion has to be repeated for each 
inequivalent site. Given S and the potential parameters CI, A ,  and Q,, we have all the 
ingredients to assemble the LMTO ASA tight-binding Hamiltonian. 

In the tight-binding representation the basis functions X R L ( r R )  are given by (Ander- 
sen et aLl985) 

where @ R L ( r )  and @ R L ( r )  are defined inside the sphere of radius s, and given as linear 
combinations of cp and Cp, which are the solutions of the Schrodinger equation and its 
energy derivative at E = E,, as 

The index L = 1, m and the constant O L  at the site R does not depend on the value of 
m and is given by the relation 

As before, unbarred values are tabulated parameters of the nearly orthogonal set. 
Using the notation of Andersen et a1 (1985), where lx)x is defined as a row vector with 
components i X R L ) ,  we find that the Hamiltonian H and the overlap 0 for the LMTO ASA 
tight-binding basis are matrices of the form 

0 = "(X/x)- = (I + Oh)'(l+ Oh) (15) 

H = "(XI -v? + VlX)Z = (I + Oh)+h + (I + oh)TE,(I + Oh)  (16) 

where h is a matrix with elements h R L , R , L . ,  which appear in equation (12). Very small 
terms, of the order of h'ph with P R L  = (q5iL), have been neglected in the above 
expressions. 
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The matrices H and 0 generate an eigenvalue problem of the form 

(H - EO)b  = 0 (17) 

where the wavefunction for a given eigenvalue i is given by 

Because of the convenient form of the overlap matrix 0, the eigenvalue problem can be 
reformulated in terms of a new effective Hamiltonian X and new vectors c such that 
(2 - E ) c  = 0. Here X and c are defined as 

X = (I + Oh)'-'H(Z'r O h ) - '  = E ,  + h - hOh + hOhOh 

c = (I + 0h)b. 

(19) 

(20) 
Higher-order terms in h have been neglected because they are of the same order as small 
terms that have been neglected before. 

In our present real-space calculations we have kept only the first-order term in h. 
This is a good approximation for energies close to E,, and o small. The first-order 
Hamiltonian % ( I )  = E,, + h can be written in a simple form in terms of the known 
quantities E , ,  & and S as 

(21) %U) = c + A 1125AlI2 

To establish the solution of the problem in terms of the first-order Hamiltonian X ( * ) ,  
we should examine the behaviour of the wavefunction V,'(r)  when this approximation is 
used. In this first-order approximation we have hb = ( E  - E,)b.  We can use this relation 
and equation (13) to rewrite equation (18) as 

= 2 { q R L ( r ) Y L ( P R ) b k L  + [ @ R L ( r )  + q R L ( r ) O R L l  
R L  

x Y L ( ~ R ) ( E '  - ~ ~ ) b k L )  ( 2 2 )  
where the subscript (1) indicates that the expression y l , ) ( r )  is valid to first order in 
E - E,. 

We can now add to equation (22) a second-order term of the form 

~ ~ R L ( ~ ) ~ R L ( E '  - ~ , > ' b k L  

without changing the value of y '  to first order. 
Therefore q i l ) ( r )  can be written in the more convenient form 

qil)(r) = [ q R R L ( Y )  + @ R L ( r ) ( E f  - E v ) l y L ( r R ) [ l  + o(E' - E u ) l b k L  
R L  

= [ q R L ( r )  + @ R L ( r ) ( E '  - E u ) ] Y L ( P R ) C k L  (23) 
R L  

where in the last expression equation (20) was used for y tl)(r). This expression is very 
similar to equation (2) used to describe the wavefunction in 0 2, but now the radial part 
has a term which is energy dependent. The generalisation of the treatment of P 2 to 
include the energy dependence of the radial part is trivial. Now, in addition to the 
contributions listed in the appendix, terms involving integrals of q ( r )  and @ ( r )  as well 
as the first moments of the partial density of states appear in the expressions for the EFG. 
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However, these extra contributions, associated with the energy-dependent term of the 
radial part were found to be always negligible when compared with the contributions 
due to the energy-independent term which are listed in the Appendix. 

When the energy-dependent term is neglected in the radial part and the first-order 
approximation is used for the Hamiltonian, the eigenvalue problem to be solved is 
reduced to 

X ( ' ) c  = Ec (24) 

with the corresponding wavefunctions VJ t1)(r) given by 

If we take to be our tight-binding Hamiltonian and q R L ( r )  to describe the radial 
part of the basis functions, the problem is completely analogous to the regular tight- 
binding formalism, in the absence of overlap, considered in S: 2. Because the LMTO 
ASA tight-binding formalism does not have the restriction of the regular tight-binding 
method, we can use the tight-binding expressions given above to treat not only d orbitals 
but also hybridised s, p and d bands. (We note that, owing to the sum over R ' ,  L' in 
equation (18), the LMTO ASA tight-binding basis function can have a mixed L character. 
If we go to higher order in h, this mixed character is not eliminated and the analogy with 
the regular tight-binding formalism is lost. In this case, V,, can still be obtained from the 
p20 component of the charge density in the Wigner-Seitz sphere.) 

Finally we wish to make clear which were the approximations used in our present 
real-space calculations for the EFG in HCP Zr.  We note that the LMTO ASA tight-binding 
approach, if implemented with the exact tight-binding structure constants and higher- 
order corrections to the Hamiltonian, is just a different representation and must give 
the same results as the standard LMTOASA method. However, our real-space calculations 
in the present form can have errors which may be classified as two different types: firstly, 
errors that come from the recursion method and, secondly, errors that come from 
the additional approximations used in the Hamiltonian. The first type is associated with 
the finite size of the cluster, the cut-off parameter in the recursion chain (here taken at 
L L  = 20) and the choice of the terminator. The cluster used here is rather large and the 
good agreement between the two calculations presented in this paper ( z  parallel to the 
c axis and z rotated by 30") indicate that the other errors introduced by the use of the 
recursion method are also small. This probably reflects the fact that the results depend 
on n,,,,,, which are integrated quantities and therefore well described by the recursion 
method approach. 

The second type of error originates from the approximation that we have made to 
simplify the Hamiltonian and to make the problem easier to treat. First of all our 
Hamiltonian is based on the LMTO ASA tight-binding formalism, where the Wigner-Seitz 
cell is substituted by a sphere of equal volume. This approximation is part of the k-space 
LMTO ASA formalism and is certainly present in our calculations. In k-space, combined 
corrections terms can be included to improve the results. If necessary. one could try to 
implement a similar correction in real space, but this has not been done here. The first- 
order Hamiltonian %(') given by equation (21) was used in our calculations, and we 
expect the results to be good only for energies close to E,, . The values of c, and AI were 
obtainedfromequation (10) using the tabulatedvalues of C,, A , ,  Q ,  and E,, for Zr. These 
are self-consistent parameters obtained from scalar relativistic LMTO ASA calculations 
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using a basis which included f electrons. In the real-space calculations presented here, 
only s-p and d electrons were included. 

The structure constant S was obtained by direct inversion on a cluster of 19 atoms, 
but only the on-site term and 9 x 9 matrices connecting the atoms to its 12 nearest 
neighbours were considered in the calculation. This is not a bad approximation because 
S gives hopping terms which are well represented by law that predicts an exponential 
decay with distance (Andersen and Jepsen 1984). Finally, in our calculations, we con- 
sider only valence electrons. 

Recently, Blaha et a1 (1988) have used a full-potential LAPW calculation to obtain the 
EFG for a large number of HCP metals, including Zr. Their calculations show that the 
contributions from the core electrons and from electrons associated with sites other than 
that being considered are small. Thus the EFG is essentially determined by the shape of 
the valence charge density close to the nucleus. This justifies in part the approximations 
that we have made in obtaining equations (3) and (4). 

It is interesting to compare our present results with those obtained by the above- 
mentioned more exact calculations, which reproduce the existing experimental data 
well. Our results for p and d contributions have the correct sign but both, when compared 
with those of Blaha et al ,  are too small by a factor of 2. We note that the EFG is a local 
and very subtle quantity so that extreme care has to be taken. As we have shown 
(equation (9)), it depends on differences in occupancy of the order of a hundredth of an 
electron between orbitals of different symmetry. Considering the approximations which 
were made when building the Hamiltonian and the subtlety of the effect, the results are 
very encouraging. 

In the companion paper (Methfessel and Frota-PessBa 1990) the real-space pro- 
cedure is applied to obtain the EFG for several other HCP metals. A detailed comparison 
between real-space and k-space calculations in these metals gives a good idea of the 
advantages and limitations of the proposed real-space scheme. 

4. Conclusions 

We have proposed a real-space procedure based on the recursion method which allows 
us to obtain the EFG for systems which can be described by a Hamiltonian of the tight- 
binding form. This real-space procedure can be used to obtain the EFG for materials 
which lack translational symmetry and cannot be treated by the usual k-space methods. 
We show that, in the case of close-packed metallic systems, a simple and adequate tight- 
binding Hamiltonian is provided by the LMTO ASA tight-binding formalism, taken to first 
order in E - E,. 

To verify that the proposed real-space procedure works in the absence of symmetry, 
we have applied it to HCP Zr, first taking the coordinate system to coincide with the 
principal axis and then using a coordinate system for which the axial symmetry is not 
preserved. The resultsfor the EFG were independent of choice of coordinates as expected, 
showing that the recursion method has enough precision to treat the problem correctly. 

Our results for HCP Zr  show that, in agreement with the results of Blaha et al, the p 
contribution dominates the EFG. We also find the correct sign for the p and d contributions 
but the magnitudes are smaller than those obtained by Blaha et a1 by a factor of roughly 
2. Considering that the EFG is a very subtle quantity which depends on differences in 
occupancy of the order of a hundredth of an electron between orbitals of different 
symmetries, the results were very encouraging. 
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Finally, the procedure developed here can be directly used to study trends for the 
EFG in amorphous metallic alloys, for which very little is known. Since the real-space 
procedure is linear in the number of non-equivalent atoms, it is also possible to treat the 
EFG of complex metallic systems with large numbers of atoms per unit cell, where the 
application of more exact k-space methods is limited by the size of the facilities or the 
cost. 
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Appendix. Theoretical expressions for the Vucomponents in MBS units using the notation 
in equation (4) 

The constant A = e / n q  where e is the proton’s charge; zPp, I d d  and Isd are radial integrals. 
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